Combinatorial Interpretations of Particular Evaluations of Complete and Elementary Symmetric Functions
نویسنده
چکیده
The Jacobi-Stirling numbers and the Legendre-Stirling numbers of the first and second kind were first introduced by Everitt et al. (2002) and (2007) in the spectral theory. In this paper we note that Jacobi-Stirling numbers and Legendre-Stirling numbers are specializations of elementary and complete symmetric functions. We then study combinatorial interpretations of this specialization and obtain new combinatorial interpretations of the Jacobi-Stirling and Legendre-Stirling numbers.
منابع مشابه
Lyndon Words and Transition Matrices between Elementary, Homogeneous and Monomial Symmetric Functions
Let hλ, eλ, and mλ denote the homogeneous symmetric function, the elementary symmetric function and the monomial symmetric function associated with the partition λ respectively. We give combinatorial interpretations for the coefficients that arise in expanding mλ in terms of homogeneous symmetric functions and the elementary symmetric functions. Such coefficients are interpreted in terms of cer...
متن کاملSome Theorems and Applications of the (q, r)-Whitney Numbers
The (q, r)-Whitney numbers were recently defined in terms of the q-Boson operators, and several combinatorial properties which appear to be q-analogues of similar properties were studied. In this paper, we obtain elementary and complete symmetric polynomial forms for the (q, r)-Whitney numbers, and give combinatorial interpretations in the context of A-tableaux. We also obtain convolution-type ...
متن کاملPlane Partitions
Throughout our study of the enumeration of plane partitions we make use of bijective proofs to find generating functions. In particular, we consider bounded plane partitions, symmetric plane partitions and weak reverse plane partitions. Using the combinatorial interpretations of Schur functions in relation to semistandard Young tableaux, we rely on the properties of symmetric functions. In our ...
متن کاملSome Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کاملThe exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 19 شماره
صفحات -
تاریخ انتشار 2012